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When localized spins on different d orbitals prefer different types of antiferromagnetic ordering, the Hund’s
rule coupling creates frustration. Using spin-wave theory we study the case of two such orbitals on a square
lattice coupled through Hund’s rule such that the first one couples antiferromagnetically more strongly to its
nearest neighbors, while the second couples more strongly to its next nearest neighbors. We find that the zero
temperature phase diagram has four regions: one characterized by the familiar �� ,�� antiferromagnetic order,
a second by the columnar �� ,0� order, a third by a canted order, and a fourth region where a quantum-
disordered state emerges. We comment on the possible relevance of these findings for the case of Fe-pnictide-
based antiferromagnets.
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The FeAs layer of the parent compound of the Fe-pnictide
superconductors1 below approximately 134 K undergoes a
spin-density-wave �SDW� ordering with a small magnetic
moment �0.35�B per Fe atom.2,3 The d orbitals of the Fe
atom are occupied by several electrons; and in the limit
where the Hund’s rule coupling is large compared to the
nearest-neighbor �NN� and next nearest-neighbor �NNN� an-
tiferromagnetic couplings, which is believed to be the case
for these materials, we may expect a much larger moment4–7

per Fe atom ��2.6�B�. Even though other similar materials
show higher values of the Fe moment11 the small value of the
observed magnetic moment, as well as other considerations,
has fueled a belief that the magnetism in these materials may
be of itinerant type.8–10 In the present Rapid Communication
we explore the possibility that the origin of this significantly
reduced moment is a result of frustration introduced by the
fact that the various Fe d orbitals prefer a different and com-
peting type of magnetic ordering.

First, let us consider a simplified model in order to intro-
duce the reader to the problem discussed here and in order to
overview our main findings. The more realistic model,12

treated within the spin-wave theory �SWT�, will be presented
below. The Hamiltonian,

H = J1�
�ij�

Si
1 · S j

1 + J2 �
��ij��

Si
2 · S j

2 − JH�
i

Si
1 · Si

2, �1�

describes two distinct spin operators Si
1 and Si

2 corresponding
to two different d orbitals of the same ith Fe atom. The spins
Si

1 interact antiferromagnetically with their NN S j
1, while the

spins Si
2 interact with their NNN S j

2 �along the diagonal of
the square�. The Hund’s rule coupling JH tends to align the
spins on the same atom. The origin of qualitatively different
spin interactions for two different d orbitals is discussed in
Ref. 12. When JH=0, the spins Si

1 order in the �� ,�� order
indicated by the horizontally aligned �red� spins in Fig. 1�a�,
while the spins Si

2 order in the �� ,0� �or �0,��� order indi-
cated by the blue-colored spins in Fig. 1�a�. In the absence of
JH any choice of direction of order for either type of spins is
equally acceptable because our model is rotationally sym-
metric. When JH�0 the canted state of Fig. 1�b� is obtained

as a compromise state between the two extremes of Fig. 1�a�
by tilting the orientation of the vertically aligned �blue� spins
by an angle � toward the red and the horizontally aligned
spins toward the orientation of the vertically aligned spins by
an angle �. The two spins “bend” toward each other due to
Hund’s rule coupling. Through this canting there is some
gain from the term proportional to JH and some loss due to
both types of spin-spin interactions. When J1 is not too dif-
ferent from 2J2 �see Fig. 2�, the classical ground state is the
canted state of Fig. 1�b� for any value of JH.

In this Rapid Communication we also study the role of
quantum fluctuations around the classical ground states
within SWT. We find large amplitude quantum spin fluctua-
tions when J1 is sufficiently close to 2J2 and near or in the
canted phase. Further, we find that for sufficiently large
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FIG. 1. �Color online� The classical ground state of the Hamil-
tonian given by Eq. �3�. The circles at the vertices of each square
denote Fe atoms. The circles at the center of each square denote As
atoms. �a� JH→0: the horizontally aligned spins are described by
H�1� and they prefer the �� ,�� state, while the vertically aligned
spins are described by H�2� and prefer the columnar order. �b� The
canted state: the JH term rotates the spins toward each other by
angles � and �.
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JH /J1 �and JH /J2� there is a quantum critical point near
JH /J1�JH / �2J2�−4 �taking S1=S2� from where a region of a
quantum-disordered state begins. We discuss the conse-
quences of our findings for the magnetic state of the Fe pnic-
tides and possible future neutron-scattering experiments to
search for the canted and the disordered states. The simpler
well-known J1-J2 model13–15 is obtained from our model in
the limit of very large JH. However, in order to explain the
observed reduced moment, the J1-J2 model requires fine tun-
ing of the J1 /J2 ratio to a value very close to the quantum
critical point; on the contrary, the present model has a much
broader parameter range yielding large amplitude quantum
spin fluctuations necessary to explain the observed reduced
moment in the Fe pnictides.

The problem to be discussed here is a somewhat simpli-
fied version of the general Hamiltonian derived in Ref. 12
and a generalization of the Hamiltonian given by Eq. �1�,

H = �
�

H��� − JH �
i,����

Si
� · Si

��, �2�

H��� = J1
����

�ij�
Si

� · S j
� + J2

��� �
��ij��

Si
� · S j

�, �3�

where the index �=1,2 , . . . ,5 refers to the five Fe d orbitals.
When we consider each of the parts H��� separately, if
J2

����J1
��� /2, the �� ,0� order �blue-colored spins of Fig. 1�a��

is stable; otherwise within SWT, the �� ,�� antiferromag-
netic order �red-colored spins in Fig. 1�a�� takes over. For
some of the Fe d orbitals in the FeAs-based materials
J2

����J1
��� /2, while for other d orbitals this condition is not

satisfied.12 We have carried out the SWT calculation includ-
ing all five Fe d orbitals; however, this Hamiltonian has ten
independent parameters; and, thus, it is hard to present the
results for the entire parameter space. For simplicity, we will
present here the case of just two orbitals such that the first
one, i.e., �=1, satisfies the condition J2

�1��J1
�1� /2 for �� ,��

order, while the �=2 orbital satisfies the condition
J2

�1��J1
�1� /2 for the �� ,0� order. As discussed above we are

interested in the case where one spin flavor prefers the co-
lumnar ��0,��� order and the other the antiferromagnetic
��� ,��� order. We find that presenting the results for just two
orbitals is clear and cleaner, and the qualitative results and
conclusions are the same with the main results of the more
general Hamiltonian described by Eq. �3�. However, we have

generalized the spin-1/2 operators to spin-S case in order to
capture some of the physics of the more-than-two orbital
case.

First, notice that the Hamiltonian at the classical level
for certain range of the coupling constants has a ground
state shown in Fig. 1�b�. The blue spins of the up
sublattice are canted by an angle � and the red spins
by an angle � as shown in the figure. The total energy
difference from the energy of the state of Fig. 1�a�
is 	E=−


1

2 cos�2��−

2

2 cos�2��−JHS1S2 sin��+��, where

1=2S1

2�J1
�1�−2J2

�1��, 
2=2S2
2�2J2

�2�−J1
�2��, and S1,2 are the

maximum length of the two classical spins. In the interval
0���� /2 and 0���� /2, there are the following ex-
trema of the energy. First, the following two trivial solutions
�� ,��= � �

2 ,0� and �� ,��= �0, �
2 �, each of which is a stable

absolute minimum, respectively, when �1−�2�2 and
�2−�1�2, where ��=

S1S2JH


�
. When neither of these conditions

for trivial solutions is satisfied the stable absolute minimum
is given by

sin2�2�� = �2
2

1 − 	 �1 − �2

2

2

1 + �1�2
, sin�2�� =

�1

�2
sin�2�� . �4�

The classical phase diagram is shown in Fig. 2�a�. Notice
that for any value of the JH there is the canted phase with the
angles given as in Eq. �4� provided that the other couplings

1 and 
2 are not very different from each other, i.e., when
they satisfy the condition discussed above. If, however, these
couplings are very different in magnitude, the global ground
state is the one preferred by the stronger coupling; i.e., if

2

1 the �� ,0� order is the ground state, and when

1

2 the �� ,�� state wins. Both transition lines separating
the canted order from the �� ,�� order, or from the �� ,0�
order, are lines of second-order critical points.

In order to study the role of quantum fluctuations, we first
carry out a local rotation of the spin quantization axes along
the direction of the classical order, i.e., by angles � and � for

spins on sublattice A as follows: Si
1z�=sin �Si

1z−cos �Si
1x and

Si
1x�=cos �Si

1z+sin �Si
1x, while the y component remains un-

changed because we have assumed that the rotation is in the
x-z plane �the plane of the drawing�. The expressions for the
second type spin are obtained from the above by replacing
�→� /2−�. For sublattices B, C, and D, we can still use the
above expressions but with the angles �� ,�� replaced by
��+� ,�+��, ��−� ,−��, and �−� ,�−��, respectively.

In order to apply the SWT,16 we express the operators
Si

�z and Si
�xSi

�y using the spin-deviation operators, i.e.,

Si
�z=S�−ai,�

† ai,�, Si
�x=�S�

2 �ai,�
† +ai,��, and Si

�y = i�S�

2 �ai,�
† −ai,��,

for both cases of spin “color” �=1,2. By substituting these
operators in the Hamiltonian given by Eq. �3�, and keeping
up to quadratic terms in spin-deviation operators we obtain

H = E0 + �
�,k
�Ak

���ak,�
† ak,� +

Bk
���

2
�ak,�

† a−k,�
† + H.c.�


+ �
k

�Vkak,1
† ak,2 + H.c. + Wkak,1

† a−k,2
† + H.c.� , �5�

where
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FIG. 2. �Color online� �a� The classical phase diagram. �b� The
phase diagram as determined by the SWT. In the region labeled by
a question mark the magnetic order is destroyed.

EFSTRATIOS MANOUSAKIS PHYSICAL REVIEW B 79, 220509�R� �2009�

RAPID COMMUNICATIONS

220509-2



Ak
��� = J1

���f1
��� + J2

���f2
��� + JHcH

���, �6�

Bk
��� = J1

���g1
��� + J2

���g2
���, cH

��� = S̄� sin�� + �� , �7�

S̄�=S1S2 /S�, and f i
� and gi

� are given in Table I.

Vk = − ��1 + sin�� + ���, Wk = ��1 − sin�� + ��� , �8�

where �=JH
�S1S2 /2 and ak,� are the Fourier components of

the operators ai,� defined over the entire Brillouin zone �BZ�
of the nonmagnetically ordered system; i.e., −��kx ,ky ��
�in our units the lattice spacing a=1�.

There are terms proportional to �Si
�zSj

�x−Si
x�Sj

z�� arising
from both the H��� and the JH terms. In the SWT, they lead to
linear terms in the operators ai,� and ai,�

† which can be elimi-
nated by choosing the angles to be those minimizing the
classical energy.

Now, the quadratic Hamiltonian given by Eq. �5� can be
diagonalized by means of a canonical transformation,

ak,� = �
�=1

2

�uk,�
���
k,� + vk,�

���
−k,�
† � , �9�

where the coefficients should be chosen to preserve the
canonical commutation relations for the boson operators.
This requires the following normalization condition
��=1

2 ��uk,�
����2− �vk,�

����2�=1. Due to the above condition, the re-
quirement for the canonical transformation to transform
Hamiltonian �5� in a diagonal form,

H = C + �
�=1

2

�k�	
k,�
† 
k,� +

1

2

 , �10�

implies that the eigenfrequencies �k,� and eigenvectors 
k,�
†

are given from the set of equations D��k,��x���=0, where the
matrix

D��� � �
Ak

�1� − � Bk
�1� Vk Wk

Bk
�1� Ak

�1� + � Wk Vk

Vk Wk Ak
�2� − � Bk

�2�

Wk Vk Bk
�2� Ak

�2� + �
�

�11�

and the components of the vector x��� are uk,1
��� , vk,1

��� , uk,2
��� , and

vk,2
��� . Here, we have taken advantage of the relations

�u−k,�
��� ��=uk,�

��� and �v−k,�
��� ��=vk,�

��� . We find that

�k,�
2 = �k � ��k, �12�

where �k= ��k,1
2 +�k,2

2 � /2+Vk
2 −Wk

2, �k,�
2 = �Ak

����2− �Bk
����2,

and �k= ���k,1
2 −�k,2

2 � /2�2+ ��k,1
2 +�k,2

2 ��Vk
2 −Wk

2�+2�Ak
�1�Ak

�2�

+Bk
�1�Bk

�2���Vk
2 +Wk

2�−4�Ak
�1�Bk

�2�+Ak
�2�Bk

�1��VkWk. The stag-
gered magnetizations along the direction of the rotated local
coordinate system �by the angles � and �� are given by

m�
† = S� −

1

N
�
k

�
�=1

2

�vk,�
����2. �13�

In the following discussion and calculations presented in
the figures we restrict ourselves to the special case
where J2

�1�=J1
�2�=0 and, thus, �1= �S2JH� / �2S1J1

�1�� and
�2= �S1JH� / �4S2J2

�2��. In the entire nonmagnetic BZ, there are
two spin-wave frequencies, an “acoustic” branch, i.e., the
�k,− which vanishes in the long-wavelength limit and the
“optical” branch �k,+ which is constant in the long-
wavelength limit and of high energy. The acoustic frequen-
cies are shown in Fig. 3 along the kx and ky directions keep-
ing the value of �2 constant at �2=4 and varying the
parameter �1. For �2=4 there are two critical values of �1,
namely, �1

−=2 and �1
+=6 which define the region of the

canted phase. The spin-wave velocities along the two direc-
tions for �1��2−2 are different as expected.

Notice that at the critical point �1
− where we enter the

canted order from the �� ,�� order, the modes at the wave
vectors �� ,0� and �0,�� �Fig. 3� become soft. We note that
in the pure NN antiferromagnet these modes have maximum
frequency. At the critical point �1=�1

+, i.e., at the border be-
tween the canted phase and the �� ,0� phase, these two
modes have zero frequency.

In Fig. 4 we present the staggered magnetizations m1
† and

m2
† along the direction of order for spin S1=S2=1 /2. The

various lines are obtained by keeping �2 fixed and by varying
�1. Notice that while the magnitude of the staggered magne-
tization along the rotated direction is a continuous function
across the transition to the canted phase, there are singulari-
ties in its derivative at �1=�1

�=�2�2. These singularities

TABLE I. The factors needed in Eqs. �6� and �7� are given
below. The notation cx=cos kx, cy =cos ky, and cxy =cos kx cos ky is
used.

�� ,�� f�
��� g�

���

�1,1� 2S1�2 cos2���+cy sin2���� −2S1�cx+cy cos2����
�1,2� 4S1�cos2���cxy −cos�2��� −4S1 sin2���cxy

�2,1� 2S2�2 sin2���+cos2���cy� −2S2�cx+cy sin2����
�2,2� 4S2�cos�2��+cxy sin2���� −4S2 cos2���cxy
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FIG. 3. �Color online� The lowest �“acoustic”� spin-wave
frequency band along the kx �negative part of the x axis� and ky

�positive part of the x axis� directions for various values of �1 which
correspond to the �� ,�� order, the canted phase, and the �� ,0�
order. These results were obtained using �2=4 and
�1=1,2 ,3 ,4 ,6 ,8.
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indicated by the open circles and open squares are caused by
the singularities in the abrupt change in the angles � and �.

Notice that for large-enough �2 and for comparable value
of �1 the staggered magnetization along the local polarization
axes becomes very small. For large values of �1 the mini-
mum occurs at �1

− the boundary between the canted and the
�� ,�� phase. There is a quantum critical point which is at-
tained when the Hund’s rule coupling is large compared to
both J2

�2� and J1
�1�. This limit is believed to be the case for the

Fe pnictides. Our model reduces to the familiar J1-J2 model
in the limit of JH→�; however, as Fig. 4 indicates reaching
this limit requires unrealistically large values of JH as com-
pared to all other couplings. Notice that the transition to the
canted phase from the side of the �� ,0� order occurs before
the staggered magnetization m2

† becomes small, even for
large values of JH. We find that the reason for the enhance-
ment of quantum fluctuations near the �1=�2−2 boundary is
that the spin-wave velocity for large JH decreases as we in-
crease JH /J1

�1�, and this is not the case at the �1=�2+2 bound-

ary. Therefore, there is a quantum-disordered phase shown
by the green area in Fig. 2�b� which illustrates the phase
diagram as modified by quantum fluctuations.

In neutron diffraction from the FeAs-based antiferromag-
nets, the canted state should produce a peak with intensity
proportional to cos2 � at k= �� ,0� �or �0,��� which has been
observed2 and a peak with low intensity proportional to
sin2 � at k= �0,�� �or �� ,0��. Therefore, if the canting angle
� is small, the latter peak might be more difficult to resolve,
and this requires further detailed experimental investigation.
In addition, the magnetic unit cell of the FeAs plane of the
canted phase is the same as the structural unit cell. This is so
because there is an orthorhombic lattice distortion below 155
K and, further, the As atoms are above and below the plane
formed by the Fe atoms in a checkerboard pattern. Therefore,
diffraction using polarized neutrons might be a simple way
to probe this canted phase. The spin-wave dispersion, which
is probed by inelastic scattering experiments,17,18 has no dis-
tinctly different features from that of the �� ,0� phase �see
Fig. 4�.

The properties of the quantum-disordered state which
emerges from the destruction of the long-range order cannot
be investigated by the present SWT approach. As found in
Refs. 6, 7, 12, 19, and 20, the values of J1

��� and J2
��� are

comparable, and therefore this phase may be accessible by
altering these parameters experimentally using pressure or
electron/hole doping.

In summary, using SWT we found that the model intro-
duced here to describe the magnetic properties of the Fe
pnictides has four phases. In addition, to the familiar �� ,��
and �0,�� phases there is a canted phase and a quantum
spin-disordered phase. We have suggested that the canted
phase could be investigated by neutron diffraction by looking
for a low intensity peak in a direction orthogonal to that of
the main magnetic peak.
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FIG. 4. �Color online� Comparison of staggered magnetizations
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† �the lines which start from �0.5 in the limit of small �1� and m2
†

for spin S1=S2=1 /2 and for various values of �2 as a function of �1.
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